Improved approximations for robust mincut and shortest path
نویسندگان
چکیده
In two-stage robust optimization the solution to a problem is built in two stages: In the first stage a partial, not necessarily feasible, solution is exhibited. Then the adversary chooses the “worst” scenario from a predefined set of scenarios. In the second stage, the first-stage solution is extended to become feasible for the chosen scenario. The costs at the second stage are larger than at the first one, and the objective is to minimize the total cost paid in the two stages. We give a 2-approximation algorithm for the robust mincut problem and a (γ+2)-approximation for the robust shortest path problem, where γ is the approximation ratio for the Steiner tree. This improves the factors 1 + √ 2 and 2(γ + 2) from [Golovin, Goyal and Ravi. Pay today for a rainy day: Improved approximation algorithms for demand-robust min-cut and shortest path problems. STACS 2006 ]. In addition, our solution for robust shortest path is simpler and more efficient than the earlier ones; this is achieved by a more direct algorithm and analysis, not using some of the standard demand-robust optimization techniques.
منابع مشابه
Improved approximations for two-stage min-cut and shortest path problems under uncertainty
In this paper, we study the robust and stochastic versions of the two-stage mincut and shortest path problems introduced in Dhamdhere et al. [6], and give approximation algorithms with improved approximation factors. Specifically, we give a 2-approximation for the robust min-cut problem and a 4-approximation for the stochastic version. For the two-stage shortest path problem, we give a 3.39-app...
متن کاملاستفاده از الگوریتم ژنتیک در مسائل کوتاهترین مسیر چند معیاره بر پایه سیستمهای اطلاعات مکانی
Multi-criteria shortest path problems (MSPP) are called as NP-Hard. For MSPPs, a unique solution for optimizing all the criteria simultaneously will rarely exist in reality. Algorithmic and approximation schemes are available to solve these problems; however, the complexity of these approaches often prohibits their implementation on real-world applications. This paper describes the development ...
متن کاملPay Today for a Rainy Day: Improved Approximation Algorithms for Demand-Robust Min-Cut and Shortest Path Problems
Demand-robust versions of common optimization problems were recently introduced by Dhamdhere et al. [4] motivated by the worst-case considerations of two-stage stochastic optimization models. We study the demand robust min-cut and shortest path problems, and exploit the nature of the robust objective to give improved approximation factors. Specifically, we give a (1 + √ 2) approximation for rob...
متن کاملTwo optimal algorithms for finding bi-directional shortest path design problem in a block layout
In this paper, Shortest Path Design Problem (SPDP) in which the path is incident to all cells is considered. The bi-directional path is one of the known types of configuration of networks for Automated Guided Vehi-cles (AGV).To solve this problem, two algorithms are developed. For each algorithm an Integer Linear Pro-gramming (ILP) is determined. The objective functions of both algorithms are t...
متن کاملA New Algorithm for the Discrete Shortest Path Problem in a Network Based on Ideal Fuzzy Sets
A shortest path problem is a practical issue in networks for real-world situations. This paper addresses the fuzzy shortest path (FSP) problem to obtain the best fuzzy path among fuzzy paths sets. For this purpose, a new efficient algorithm is introduced based on a new definition of ideal fuzzy sets (IFSs) in order to determine the fuzzy shortest path. Moreover, this algorithm is developed for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1010.2885 شماره
صفحات -
تاریخ انتشار 2010